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1 Introduction and Motivation

Multiscale is a concept with which the entire spatial solution domain is divided into several subdomains where
discretization schemes with different angular, space, energy resolutions can be applied [1, 2, 3, 4, 5, 6, 7]. The
multiscale capability allows the transport solver to zoom into the domains which are of most interest without
investing corresponding computing resources elsewhere. Consequently the computational efforts can be sig-
nificantly reduced without significantly sacrificing the accuracy on the quantities of interest. Lower resolution
in subdomains within a problem are typically made possible though spatial homogenization and energy con-
densation. General equivalencing needs be applied to minimize the errors caused by the homogenization and
condensation [8]. The multiscale approach can also be used for problems in which general equivalence cannot
be applied accurately for certain subdomains, for example, within TREAT simulations, the experiment region
contained within full core.

A multiscale capability was first implemented within Rattlesnake using the mortar finite element method (MFEM)
framework provided by MOOSE [7]. The interface condition for coupling SN (discrete ordinates method, suitable
for heterogeneous subdomains) and PN (spherical harmonics expansion method, which is better for subdo-
mains with homogenization and condensation) with Lagrange multipliers defined on the subdomain interface or
mortar interface were tested and proven to function correctly. However, the Lagrange multiplier-based approach
requires certain constraints for domain partitioning (the domain cannot be partitioned along the interface) with
MPI, which is not currently supported by the framework. Hence, to more fully exploit the strength of paral-
lel computing, we propose a new upwinding approach in this report. In this approach, the out-going angular
fluxes of all the subdomains are the input of the neighboring subdomains. Because this does not require the
variables to be defined on the interface, it can be implemented with the existing interface kernels provided by
MOOSE without any constraints on the domain partitioning. However, it does come with the constraint that
the mesh be conforming, i.e. there are no hanging nodes along the subdomain interface. This should not be
a major issue, because users can (and generally do) generate a conforming mesh for their simulations. The
upwinding approach can be implemented with the MFEM framework, which is necessary when the mesh is
not conforming. This scheme also introduces the asymmetry of the streaming operator, which could make the
problem harder to solve. It is noted that this is not necessary a drawback of the upwinding scheme but rather a
cost of multiscale since the Lagrange multiplier approach also creates a saddle point problem, which requires
special treatments on the numerical solver side. In the long term, the framework should support both Lagrange
multiplier and upwinding approaches in a similar way for conforming meshes without requiring the constraints
on domain partitioning.

In this report, both SN and PN discretization are based upon the SAAF (self-adjoint angular flux) [9, 10, 11, 12,
13] formulation of the transport equation although other formulations of the transport equation can be applied.
The SAAF equation can be classified as a second order form of the transport equation. It introduces the
proper stabilization for the continuous finite element method (CFEM) to perform spatial discretization for the
hyperbolic transport equation. With SAAF, the symmetrization of the streaming operator breaks the causality of
the particle transport process, i.e., particles transmit information not only from behind, as is supposed to occur,
but also transmit information forward. This can cause issues in certain problems, for example, the thin-thick
contact problem where the solution could be distorted by the thick materials. With the upwinding scheme on
the thin-thick interface, the causality can be partially restored.

In Section 2, we first introduce the weak form of the upwinding interface condition without angular discretization.
We then apply SN - SN SN - PN and PN - PN for the interface condition. In the case of SN - PN we can
see that from PN to SN the angular fluxes are sampled on the out-going discrete directions and used as the
condition for the SN side. On the other side, we have the Marshak boundary condition for PN [14]. In the
case of PN - PN we obtain the Riemann upwind scheme. We then present numerical results with a few test
problems in Section 4. We then state our conclusions and propose future work areas.
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2 Angularly Continuous Weak Forms

2.1 Another view of SAAF from a weighted least-squares functional

We have previously derived the SAAF weak form from the weighted residual equation. The SAAF weak form can
be derived with the weighted least-squares functional. Although this is not necessary for proposing the weak
form for the upwinding interface condition, it gives another view for SAAF and makes the derivation clearer.

For notation simplicity, we will perform our derivation with the one-speed steady-state transport equation with
isotropic scattering and vacuum boundary conditions. Extending the methodology to multigroup, eigenvalue
or transient problems with anisotropic scattering and various boundary conditions is straightforward. The one-
speed steady state particle transport equation for a specific direction with scattering can be generically ex-
pressed as:

Lψ = qs (1a)

L ≡ �Ω · ∇+ σt and qs ≡ Sψ + q = σsφ + q, (1b)

where ψ(�r, �Ω) is the angular flux,�r ∈ D, D is the spatial solution domain, S is the unit sphere containing 4π of
solid angle, φ(�r) ≡ ∫

S dΩ ψ is the scalar flux, L is the transport operator, S is the scattering operator and q is
distributed volumetric source. The boundary condition is

ψ(�rb, �Ω) = ψinc(�rb, �Ω),�rb ∈ ∂D, �Ω ·�nb < 0, (2)

where �nb is the outward unit vector at a point�rb on the boundary.

Solving the transport equation with the weighted least-squares finite element approach is equivalent to solving
the following minimization problem: given a trial space Vh, find ψ ∈ Vh such that the following functional is
minimized:

Γ =
∮
S

dΩ
∫
D

1
σt
(Lψ − qs)

2 +
∫
�n·�Ω<0

dΩ
∫

∂D
ds

∣∣∣�n · �Ω
∣∣∣ (ψ − ψinc)2 (3)

�n is the outward normal vector of domain D on the surface. We can translate the above problem by performing
variation into the following weak formulation: find ψ ∈ Vh such that∮

S
dΩ

∫
D

d�r
[

Lψ∗ 1
σt
(Lψ − qs)

]
+

∫
�n·�Ω<0

dΩ
∮

∂D
ds

∣∣∣�n · �Ω
∣∣∣ ψ∗(ψ − ψinc) = 0. (4)

Recognizing that

ψ =
−�Ω · ∇ψ + qs

σt
(5)

and expanding the transport operator, we obtain the SAAF weak formulation after doing integration by parts:∮
S

dΩ
∫
D

d�r
(
�Ω · ∇ψ∗ 1

σt
�Ω · ∇ψ + σtψ

∗ψ − ψ∗qs − �Ω · ∇ψ∗ qs

σt

)
(6)

+
∫
�n·�Ω>0

dΩ
∮

∂D
ds

∣∣∣�n · �Ω
∣∣∣ ψ∗ψ −

∫
�n·�Ω<0

dΩ
∮

∂D
ds

∣∣∣�n · �Ω
∣∣∣ ψ∗ψinc = 0.

2.2 Contiguous-discontinuous (CD) weighted least-squares functional

Note that the weak form is based on a continuous basis so continuity is enforced everywhere in the domain.
However, there are certain situation, such as on a material interface, where allowing discontinuity might be
beneficial.
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We define the functional as follows:

ΓCD = ∑
Di⊂D

[∮
S

dΩ
∫
Di

d�r
1
σt
(Lψi − qsi)

2 +
∫
�n·�Ω<0

dΩ
∮

∂Di

∣∣∣�n · �Ω
∣∣∣ (ψi − ψinc)2

]
+ ∑

Di⊂D
∑
Γij

∫
�ni ·�Ω<0

dΩ
∮

Γij

ds
∣∣∣�ni · �Ω

∣∣∣ (ψi − ψj)
2 (7)

where Γij is the interface between Di and contiguous subdomain Dj and �ni is the outward normal of subdomain
Di on the interface. ∂Di is the part of the boundary attached to the subdomain Di. This then leads to the
following contiguous-discontinuous formulation:

∑
Di⊂D

∮
S

dΩ
∫
Di

d�r
(
�Ω · ∇ψ∗

i
1
σt
�Ω · ∇ψi + σtψ

∗
i ψi − ψ∗

i qsi − �Ω · ∇ψ∗
i

qsi

σt

)
+ ∑

Di⊂D

[∫
�n·�Ω>0

dΩ
∮

∂D
ds

∣∣∣�n · �Ω
∣∣∣ ψ∗ψ −

∫
�n·�Ω<0

dΩ
∮

∂D
ds

∣∣∣�n · �Ω
∣∣∣ ψ∗ψinc

]
+ ∑

Di⊂D
∑
Γij

∮
Γij

ds
(∫

�ni ·�Ω>0
dΩ

∣∣∣�ni · �Ω
∣∣∣ ψ∗

i ψi −
∫
�ni ·�Ω<0

dΩ
∣∣∣�ni · �Ω

∣∣∣ ψ∗
i ψj

)
= 0. (8)

Intuitively, the formulation above resembles CFEM-SAAF within the subdomains and on domain boundaries
but differs from it on interfaces. It is noted that by the formulation above, when assembling the system, every
subdomain interface needs to be visited twice. It can then be shown that the interface terms are identical to
upwinding flux. We will name the resulting scheme as CD-SAAF in the remainer of this report.

2.3 Compact weak forms of CD-SAAF

To simplify notations, we define the following inner products with generic functions a and b:

(a, b)Di ≡
∫
Di

d�r
∮
S

d Ω ab (9a)

< a, b >Γ≡
∮

Γ
ds

∮
S

dΩ |�n · �Ω|ab, (9b)

< a, b >+
Γ ≡

∮
Γ

ds
∫
�n·�Ω>0

dΩ |�n · �Ω|ab, (9c)

< a, b >−
Γ ≡

∮
Γ

ds
∫
�n·�Ω<0

dΩ |�n · �Ω|ab, (9d)

where Γ is either an interior or a boundary face and�n is the normal vector on the face. While�n can be arbitrarily
oriented in the interior, it must be outward on the boundary.

The weak form of CD-SAAF can be re-expressed as:(
1
σt
�Ω · ∇ψ∗, �Ω · ∇ψ

)
D
+ (ψ∗, σtψ)D − (ψ∗, qs)D −

(
1
σt
�Ω · ∇ψ∗, qs

)
D

(10)

− 〈[ψ∗] , ψ−〉Γ + 〈ψ∗, ψ〉+∂D −
〈

ψ∗, ψinc
〉−

∂D
= 0,

where Γ is the interface between any two contiguous subdomains. Here we drop the subdomain subscript of
fluxes and merged the similar terms of all subdomains together. Note that the angular flux can be discontinuous
across subdomain interfaces. The jump in the angular flux is defined as:

[ψ∗] := ψ∗
+ − ψ∗−, (11a)

ψ∗± := lim
s→0+

ψ∗(�r ± s�Ω). (11b)

3



More specifically, the weak form can be separated to the bilinear form bCD−SAAF(ψ
∗, ψ) and linear form lCD−SAAF(ψ

∗)
such that b(ψ∗, ψ) = l(ψ∗) for any test function within the same function space, where the solution is sought:

bCD−SAAF(ψ
∗, ψ) =

(
1
σt
�Ω · ∇ψ∗, �Ω · ∇ψ

)
D
+ (ψ∗, σtψ)D − (ψ∗, Sψ)D −

(
1
σt
�Ω · ∇ψ∗, Sψ

)
D

(12a)

+ 〈ψ∗, ψ〉+∂D − 〈[ψ∗] , ψ−〉Γ,

lCD−SAAF(ψ
∗) = (ψ∗, q)D +

(
1
σt
�Ω · ∇ψ∗, q

)
D
+

〈
ψ∗, ψinc

〉−
∂D

. (12b)

This form is almost identical to the original SAAF weak form except an extra interface upwinding term as
underlined above.

4



3 Angular Discretization

3.1 Redefining Upwinding

The classic upwinding definition in Eq. (11b) is with respect to specific direction, which introduces difficulties
when performing angular discretization. Therefore, we redefine the upwinding in a manner that will be easier to
implement. When treating the interface upwinding, we always specify master and slave subdomains. We assign
master subdomains with a higher angular resolution than its neighboring or slave subdomains. For instance,
we always set SN and PN subdomains to be master and slave, respectively when we have an SN-PN interface
because we typically use SN for a higher angular resolution. We choose the subdomains with higher PN order
as the master when PN-PN interface is considered. For SN-SN interface, the master can be assigned to any
subdomain because the angular quadrature must be identical due to lack of angular interpolation at present. We
set the normal vector to be pointing from master subdomain to slave subdomain. We give the classic definitions
based on the normal vector:

ψ∓ = lim
s→0+

ψ(�r ∓ s�n) and �ψ∗� = ψ+∗ − ψ−∗. (13)

That being said, ψ− is always fixed to be the master angular flux. Consequently, the interface term can be
re-expressed as:

I = − 〈[ψ∗] , ψ−〉Γ = −
∮

Γ
ds

(∫
�n·�Ω>0

dΩ
∣∣∣�n · �Ω

∣∣∣ �ψ∗� ψ− −
∫
�n·�Ω<0

dΩ
∣∣∣�n · �Ω

∣∣∣ �ψ∗� ψ+

)
= − 〈�ψ∗� , ψ−〉+

Γ +
〈�ψ∗� , ψ+

〉−
Γ . (14)

3.2 SN - SN coupling

We solve the equation in a given set of directions specified by an angular quadrature{
�Ωm, wm, m = 1, · · · , M

}
with SN. If the angular quadratures on two adjacent subdomains are the same, the

discretized version of the upwinding interface condition can be simply expressed as:

I = − ∑
�n·�Ωm>0

wm

(∣∣∣�n · �Ωm

∣∣∣ �ψ∗
m� , ψ−

m

)
Γ
+ ∑

�n·�Ωm<0

wm

(∣∣∣�n · �Ωm

∣∣∣ �ψ∗
m� , ψ+

m

)
Γ

, (15)

with the surface integral for generic functions a and b on arbitrary surface F being defined as:

(a, b)F =
∮
F

ds a b. (16)

This condition is the traditional upwinding scheme for the discontinuous finite element method (DFEM) trans-
port [15].

3.3 PN - PN coupling

3.3.1 Direct Coupling

We define the PN expansion of the angular flux with real-valued spherical harmonics:

ψ(�Ω) = �R�(�Ω)
−→
Φ , (17)

where �R(�Ω) and
−→
Φ are column vectors of spherical harmonics and moments, respectively. We also define the

matrices:
L± =

∫
�n·�Ω≷0

dΩ
∣∣∣�n · �Ω

∣∣∣ �R(�Ω)�R�(�Ω). (18)

5



It can be seen that L± are symmetric and positive definite. Also,

L− = CL+C, (19)

where C is a diagonal matrix, whose non-zero entries on diagonal is
{
(−1)l , l = 0, · · · , N; m = −l, · · · , l

}
. C−1

is equal to C. Both L+ and L− are positive definite and their eigenvalues are identical. Also the rotation with
respect to �n does not change the eigen structure of these two matrices.

If we plug Eq. (17) back to Eq. (14), we see:

I =
〈−→

Φ −∗, L+−→Φ −
〉
+

〈−→
Φ +∗, L−−→Φ +

〉
−

〈−→
Φ +∗, L−−→Φ −

〉
−

〈−→
Φ −∗, L+−→Φ +

〉
=

〈�−→
Φ ∗

�
,
(
L+ − L−) {−→Φ}

+
L+ + L−

2

�−→
Φ

�〉
(20)

where
{−→

Φ
}
=

(−→
Φ + +

−→
Φ −

)
/2.

3.3.2 Riemann Solver-Based Coupling

It is clear that the formulation above similar to the upwinding in PN-DFEM. What is different here is that PN-
DFEM upwinding is based on the eigenstructure of streaming matrices while Eq. (20) is not. An alternative is
then to perform eigenvalue decomposition and reformulate the upwinding in an eigenstructure based way. The
cause of the difference is that the original formulation for upwinding is for the transport equation before it is
discretized in angle while the eigenstructure based method is the upwinding after PN angular discretization has
been introduced.

The interface weak form can be rewritten as:

I =
∫
�n·�Ω>0

dΩ
∣∣∣�n · �Ω

∣∣∣ (�ψ∗� , ψ̃
)− ∫

�n·�Ω<0
dΩ

∣∣∣�n · �Ω
∣∣∣ (�ψ∗� , ψ̃

)
, (21)

where ψ̃ is the “proper” angular flux that needs to be specified. Expand all the angular flux with PN method, we
have:

I(
−→
Φ −∗,

−→
Φ +∗, Φ̃) =

〈−→
Φ −∗,

(
L+ − L−) Φ̃

〉
Γ
−

〈−→
Φ +∗,

(
L+ − L−) Φ̃

〉
Γ

. (22)

To know how to apply upwinding for L+ − L−, we need to know the eigenstructure of the matrix. Since L+ − L−
is symmetric, eigenvalue decomposition give us:(

L+ − L−) = UΛU�, (23)

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of L+ − L−. U is a matrix whose
columns are the eigenvectors of L+ − L−. Before proceeding, we separate Λ to be Λ+, which contains only
the positive eigenvalues of Λ, and Λ−, which in turn contains the absolute values of negative eigenvalues.
Accordingly, we have:

Λ = Λ+ − Λ−. (24)

Then we can define two new matrices:
M± = UΛ±UT . (25)

It is noted that

M+ − M− = UΛ+U� − UΛ−U� = U(Λ+ − Λ−)U� = UΛU� = L+ − L−. (26)

With the separation, the interface weak form can be transformed to:

I =
〈−→

Φ −∗, M+−→Φ −
〉

Γ
−

〈−→
Φ −∗, M−−→Φ +

〉
Γ
−

〈−→
Φ +∗, M+−→Φ −

〉
Γ
+

〈−→
Φ +∗, M−−→Φ +

〉
Γ

.

6



Similarly, the weak form can be re-expressed in a upwinding manner:

I =
〈�−→

Φ ∗
�

,
(
M+ − M−) {−→Φ}

+
M+ + M−

2

�−→
Φ

�〉
, (27)

therefore

I =
〈�−→

Φ ∗
�

,
(
L+ − L−) {−→Φ}

+
M+ + M−

2

�−→
Φ

�〉
. (28)

At the end, the new upwinding method differs from the original upwinding in the dissipation portion. Both PN
upwinding schemes Eq. (20) and Eq. (28) are implemented in Rattlesnake. The PN orders on both sides are
different, and the matrices are no longer square.

If we further proceed, we know:

M+ + M− = UΛ+U� + UΛ−U� = U(Λ+ + Λ−)U� = ∑
k
�rk |λk|�r�k , (29)

where (λk,�rk) is the kth eigenpair of L+ − L−. Introduce this back to (28), we will have the upwinding repre-
sented by the Roe type Riemann solver:

I =

〈�−→
Φ ∗

�
,
(
L+ − L−) {−→Φ}

+

∑
k
�rk |λk|�r�k

2

�−→
Φ

�〉
. (30)

3.4 SN-PN coupling

We always choose SN to be the master subdomain such that the normal vector �n is always fixed to be from SN
to PN. We separate the weak form into four different terms based on what the weight and basis functions are,
i.e.:

I = ISN−SN + ISN−PN + IPN−SN + IPN−PN . (31)

By performing all the angular integration with the quadrature identical to the SN subdomain, we can specifically
write all four terms as:

ISN−SN = ∑
�Ωm ·�nm>0

(∣∣∣�n · �Ωm

∣∣∣ ψ−∗
m , ψ−

m

)
, (32a)

IPN−SN = − ∑
�Ωm ·�nm<0

(∣∣∣�n · �Ωm

∣∣∣ ψ−∗
m , �R(�Ωm)

−→
Φ +

)
, (32b)

ISN−PN = −
(−→

Φ +∗,
−→
J
)

, (32c)

IPN−PN =
(−→

Φ −∗, L̄−−→Φ −
)

, (32d)

where
−→
J = ∑

�Ωm ·�nm>0

∣∣∣�n · �Ωm

∣∣∣ �R(�Ωm)ψ
−
m , (33)

L̄− = ∑
�Ωm ·�nm<0

∣∣∣�n · �Ωm

∣∣∣ �RT(�Ωm)�R(�Ωm). (34)

−→
J are the partial outgoing flux moments with the first entry being the partial outgoing current and L̄− is the

discretized version of L−.
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3.5 Diffusion-Diffusion Coupling

The coupling between two diffusion schemes is to borrow the methodology developed for DFEM-diffusion that
penalizes the jump of the scalar flux value. The difference from DFEM-diffusion is that in each subdomain
CFEM is still applied to discretize the diffusion equation. We only apply the penalty method on the interface.
We can arbitrarily choose one subdomain as the master and as always we fix the normal vector �n pointing from
master to slave. Further, every quantity belonging to a master/slave subdomain will be given a superscript “∓”.
The definition of the penalty coefficient is given by [16]:

κ = max
(

p−(p− + 1)
D−

h− + p+(p+ + 1)
D+

h+
,

1
4

)
, (35)

where p is the polynomial order; D is diffusion coefficient and h is the length of the cell orthogonal to interface.
As an example of the 2D triangular mesh, h = 2A

L where A is the element area and L is the element edge length
on the interface. Thereafter, the interface bilinear form is formulated as:

I = 〈�Φ∗� , κ �Φ�〉Γ + 〈{D∂nΦ∗} , �Φ�〉Γ + 〈�Φ∗� , {D∂nΦ}〉Γ , (36)

where Φ is the scalar flux and ∂nΦ = �n · ∇Φ.
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4 Numerical Tests

Test results for SN-SN, PN-PN and SN-PN couplings will be presented. Reed-like problem [17] will be pre-
sented for all three schemes. The multi-region heterogeneous feature of the problem makes it ideal for testing
purpose. For SN-PN coupling, an eigenvalue problem named “poison problem” will be presented. Essentially,
this problem is a 2D thick square of pure absorber surrounded by a thin fuel meat. Strong absorption makes it
difficult for the CFEM-SAAF-SN approach to get an accurate estimation of keff even with many layers of spatial
refinements. Finally, a more realistic problem, the KAIST-3A 2D test problem will be presented for an SN-PN
calculation. The results are organized into three subsections for SN- SN, PN- PN and SN- PN respectively.

4.1 SN- SN

4.1.1 Reed’s Problem

The first test is for Reed’s problem for SN-SN coupling as illustrated in Figure 1. S16 is used in the calculation.
In the void, the Rattlesnake void treatment is utilized [13]. We can see that the flux profile is flat to a round-off
level in the void region, which means that within void treatment, the subdomain-wise conservation is achieved.
However, CFEM-SAAF-SN with void treatment does not possess this property. In fact, with under-resolved
mesh, CFEM-SAAF-SN would present oscillations around the right interface in void as shown by the black dots
in Figure 6. By partitioning subdomains with different materials, the subdomain-wise particle causality is fixed.

Figure 1 Reed’s problem for SN-SN coupling

4.1.2 Two-Region Test

The second test is a simple two-region absorber test. No source is presented in the test. An incident boundary
condition is imposed on left side of the domain. Particles go through a thin absorber (σt = 0.1, x ∈ (0, 1) cm)
and then are attenuated by a thick absorber (σt = 10, x ∈ (1, 2) cm) and exit at the right boundary. Figure
2a presents the comparison of the flux profiles with 16 cells for both CFEM-SAAF-S4 and CD-SAAF-S4. With
the additional degrees of freedom (DoFs) on the interface, the scalar flux in the thin material is leveled up
accurately while the CFEM-SAAF’s result is highly distorted in the thin material. Figure 2b is the relative error of
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the leakage rate on the right side for different schemes. We also compared the least-squares (LS) S4 solution
with the other two. Fixing up the causality not only brings accurate scalar flux profile in thin material, but also
affects the accuracy of boundary leakage.
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(a) Scalar flux profiles.
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(b) Leakage rate errors on right side boundary.

Figure 2 Two-region absorber test for SN- SN coupling.

4.1.3 Iron-Water Shielding Problem

The iron-water problem is a 2D shielding problem with relatively thick materials. S2 is used in angle. A calcula-
tion with 1200x1200 cells is conducted to generate a reference solution. When measuring the absorption rate
error in iron, we found both methods have roughly second order spatial convergence rates (see Figure 3). Yet,
CD-SAAF delivers lower error magnitudes for all cell sizes.

(a) Problem configuration.
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(b) Error of absorption rates in iron.

Figure 3 Iron-water shielding problem for SN-SN coupling.
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4.2 PN- PN

4.2.1 Modified Reed’s problem

The modified Reed’s problem in the remainder of this report is based on the original Reed’s problem but with the
void region replaced with a thin absorber (σt = 0.01). The mesh is refined such that the errors we see in Figure
4 are primarily from angular discretization. The P1-P1 curve presents discontinuous solution on the interfaces.
This seems to be the results of the scheme trying to better fit the flux shape without increasing angular space
in subdomains. Instead, the solution is detached on the interfaces. The Roe solver (“CD-SAAF-PN: Riemann”
shown in the legends) presents similar discontinuous solution on interfaces. However, increasing angular order
from P1 to P5, we observe the discontinuity on the interfaces tend to vanish.

(a) CD-SAAF-P1 with different upwindings. (b) CD-SAAF-P5 with different upwindings.

Figure 4 Modified Reed’s problem with different order PN angular disretizations

If we check the error of integral flux at the spots where schemes differ most (i.e. x ∈ (2, 3) cm), we see the error
magnitudes are lowered significantly based on the reference of S110 (see Figure 5). However, with increasing
angular orders, all scheme errors decrease in the same direction.

4.3 SN - PN

4.3.1 Reed’s problem

Reed’s problem is the first test used as a demonstration of SN-PN functionality. Green dots are for the hybrid
calculation of S16 for x ∈ (3, 6) cm and P5 elsewhere. The calculation presents acceptably accurate scalar
flux profile in most regions. However, the scalar flux level in void is lower than the reference, which is from the
CFEM-SAAF-S16. Apparently, high angular accuracy is required not only in void, but also in the subdomains
contiguous to it in order to attain an accurate solution. Therefore, relatively high order PN, P13, is placed as a
buffer layer for x ∈ (2, 3) cm between P5 and S16. The purple triangles are for the new solution. As expected,
the solution in void is more accurate by introducing the “buffer” region.

4.3.2 Quasi-1D Modified Reed’s Problem

Higher dimensionality would introduce complexity and difficulty in certain situations. In 1D, SN and PN are
equivalent with certain types of SN quadrature. However, as spherical harmonics is the single set of angular
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Figure 5 Modified Reed’s problem absorption rate errors for multiple schemes for x ∈ (2, 3) cm.

Figure 6 Reed’s problem for SN-PN coupling

bases which is rotationally invariant, SN with angular quadrature in multi-D it would not be equivalent to the
PN method. The discrepancy between these two methods causes oscillations around the coupling interface
when coupling is realized by strongly enforcing angular flux continuity, as what a Lagrange multiplier interface
condition would deliver[7]. A further check beyond the 1D test is thus necessary. We proposed to extend the
modified Reed’s problem to 2D. By making the upper and lower boundaries of a rectangular domain reflective,
a 2D variation of modified Reed’s problem is created. Along the x-axis, the setting is the same as for the 1D
modified Reed’s problem. Figure 7 presents the scalar flux for a hybrid scheme between P3 (x ∈ (3, 5) cm) and
S4 (elsewhere). Without angular smoothing around the coupling interfaces, necessary for Lagrange multiplier
method, we still observe smooth solution in the domain. No obvious oscillation is seen around the interfaces
with the upwinding scheme.
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Figure 7 Quasi 1D modified Reed’s problem for SN-PN coupling compared with mortar implementation of
multiscale

Figure 8a is a line plot along axis for y = 0.5 cm. Lagrange multiplier and CD-SAAF solutions are produced
using 4x32 cells. The reference is calculated with CFEM-SAAF-S4 with 2 additional levels of uniform refinement.
CD-SAAF agrees with mortar solution in most regions but has much higher accuracy in the thin absorber, where
the mortar solution is significantly distorted by neighboring thick materials. Lines along the y-axis near the SN-
PN interfaces are shown in Figure 8b. Graphically, the scalar flux is flat and no oscillation is manifested around
the interfaces.

(a) Line plot for y = 0.5 cm.
(b) Line plots along y direction around SN-PN inter-
faces.

Figure 8 Line plots for quasi 1D modified Reed’s problem.

4.3.3 Poison Problem

The “poison” problem is an eigenvalue problem characterized by a strong absorber in the middle of a 2D
domain and surrounded by thin fuel meat. With the presence of the strong absorber, CFEM-SAAF-S16 needs
a lot of refinement to get a converged keff. With 9 layers of uniform refinement1, CFEM-SAAF-S16 gives a
keff of 0.89880. We see slow convergence with increasing refinement from Table 1. However, when setting
an interface between the two materials, S16-S16 gives 0.89878 (see Table 2) with only five layers of uniform
refinement. More importantly, when using PN schemes in fuel instead, we gain comparable keff value with
about P2 in the fuel, which is a significant savings in terms of total DoF.

1The total DoFs is over 150 million with S16.
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Table 1 keff results for CFEM-SAAF-S16 with different layers of uniform refinements

Refinement layers 5 6 7 8 9
keff 0.89675 0.89723 0.89779 0.89856 0.89880

Table 2 keff Results for SAAF-S16 in Absorber Coupled with Different Angular Schemes in Fuel Meat, with 5
Layers of Uniform Refinement

Coupled schemes S16 P1 P2 P3 P4
keff 0.89878 0.89852 0.89882 0.89879 0.89879

Coupled schemes P5 P6 P7 P8 P9
keff 0.89879 0.89879 0.89879 0.89879 0.89879

4.3.4 2D KAIST-3A Test

The 2D 7 group KAIST-3A problem [18] is used for a more “realistic” test. The configuration and subdomain
settings are shown in Figure 9.

(a) Configuration of 2D KAIST-3A problem. (b) Subdomain settings for SN-PN coupling.

Figure 9 2D KAIST-3A problem configuration and settings for SN-PN coupling subdomains

The 7-th group flux is plotted in Figure 10. We can see that the interface condition works properly with this
relatively complicated geometry.
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Figure 10 The 7-th group flux of KAIST-3A benchmark with CD-SAAF
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5 Conclusions and Future Work

In this report we present multiscale capabilities within Rattlesnake using an upwinding scheme. Although this
multiscale approach requires the mesh to be conforming, it does not require constraints on the mesh parti-
tioning. Hybrid SN-PN interface conditions with upwinding are implemented and tested with both source and
eigenvalue multi-dimensional problems. A Roe type Riemann solver is proposed for coupling PN to PN on
the subdomain interface. The implementation allows flexible assignment of discretization schemes on the sub-
domains. Interface conditions are automatically added by Rattlesnake making the user interface fairly friendly.
Because the upwinding scheme restores the causality of particle streaming on the subdomain interfaces, we see
significant improvement in accuracy for certain test problems including a thin-thick material interface problem.
The results suggest that a buffer region between high resolution subdomain and the low resolution subdomain
is desirable. In the future, we will test the implementation with more realistic problems, ultimately for TREAT
experiment modeling. Homogenization equivalence techniques should be incorporated into the multiscale sim-
ulation to reduce the errors introduced by spatial homogenization. Regions with different energy resolution also
need to be considered.
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